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Relaxation processes in administered-rate pricing
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We show how the theory of anelasticity unifies the observed dynamics and proposed models of
administered-rate products. This theory yields a straightforward approach to rate model construction that we
illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demon-
strate how the use of this formalism leads to a natural definition of market friction.

PACS number~s!: 89.90.1n, 62.40.1i, 81.40.Jj, 83.50.By
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I. INTRODUCTION

Administered-rate products represent a substantial f
tion of the liabilities of banks and savings and loans1 and the
ability to describe the response of these products to cha
in market rates is of critical importance for interest-rate r
management.2 Unlike market rates~e.g., U.S. Treasury
bonds! that are set in an auction environment or contract
rates that respond instantaneously to market rates in a
scribed manner~e.g., home mortgages!, administered rates
~e.g., interest rates on checking and savings accounts! are set
by a committee seeking an equilibrium rate in response
changes in market rates. Factors that bear on this equilibr
pricing include expected future market rates, compet
pricing responses, and depositor’s short-term and long-t
balance elasticities~i.e., propensity to change balance leve
in response to rate changes!; all of which are known with
limited certainty. Balance elasticities are exceedingly di
cult to estimate with any reliability because banks usually
not preserve much historical data and do not usually emp
the resources needed to evaluate the data that does
Consequently, these committees indicate a certain amou
inertia.

The general proclivity of pricing committees to leave w
enough alone has been found in a variety of empirical stu
@3–9# that have established that administered rates are dr

1Mays @1# notes that nonmaturity deposits—a class
administered-rate products—comprise ‘‘42% of total bank liab
ties and over 25% of savings and loan~S&L! liabilities as of De-
cember 1995.’’

2As pointed out by Mays@1# and O’Brienet al. @2# the present
value PV of administered-rate nonmaturity deposits can be e
mated using the equation

PV5D02(
t51

`
Dt21~rt

(m)2rt
(d)2c!

~11rt
(m)!t , ~1.1!

whereDt is the deposit balance at timet, r t
(m) is the market rate,r t

(d)

is the administered deposit rate, andc denotes the noninteres
charges associated with maintaining the account. Clearly the
interest rate sensitivity in the present value: explicitly in the appe
ance of the market rate in Eq.~1! and implicitly in both the sensi-
tivity of the balances and the administered deposit rate to cha
in the market rate.
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by market rates and that the response of an administered
to the market rate is not instantaneous. This behavior
been modeled by a number of investigators@1,2,8–13# who
have settled largely on the use of partial adjustment mod3

to describe the noninstantaneous response of administ
rates to changes in market rates. While these models o
adequately describe the observed administered-rate beha
they largely lack a theoretical basis with which to interp
the resulting parameters and with which to link rate policy
the rate model. In this paper we show that the formal
sumptions upon which previous treatments of administer
rate dynamics are based are identical to the assumptions
derlying the formal treatment of a variety of relaxatio
processes in condensed-matter physics including magn
dielectric, and anelastic relaxations@15#. All these physical
phenomena involve time-dependent relaxations tow
newly established equilibria that follow from a change in
driving force and can be described in terms of line
response theory. Since these physical phenomena sha
common mathematical description of relaxation/respo
and since these physical phenomena and administered
dynamics share a variety of underlying assumptions,
make theansatzthat these phenomena all share a comm
mathematical description. Given this we can move beyo
an ad hoctreatment of administered-rate dynamics and e
ploy the phenomenological models that have been develo
to model these physical relaxation processes to model
dynamics of administered-rate deposits.

The theory of anelasticity provides a useful framewo
with which to develop our treatment of administered-ra
dynamics because of the similarity between some of
equations that have appeared in the literature on adm
tered rates and the scalar representation of anelasticity.
show in Sec. II how the theory of anelasticity can be used
develop a hierarchy of continuous-time models of t
administered-rate response function that include, as a su
the partial adjustment models that have appeared in the
erature. We find that the continuous-time models that foll
from this approach lend themselves to an easy mapping
tween certain aspects of rate policy and of model structu

f

i-

is
r-

es3See, for example, Chap. 9 of Kennedy@14# for a discussion of
partial adjustment models in econometrics.
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PRE 62 4731RELAXATION PROCESSES IN ADMINISTERED-RATE PRICING
We illustrate the utility of this approach in Sec. III by mod
eling the rate-response behavior for two administered-
products: money market accounts and time deposits. In
IV we explore the notion of dissipation embodied in the
relaxation dynamics to develop a formal notion of mark
friction.

II. RATE DYNAMICS

A. Assumptions and econometric models

Fundamental to essentially all descriptions
administered-rate product rates is the notion that there e
an equilibrium relationship between the product rater̃ (p) and
the market rater (m) that is of the form

r̃ (p)5c1Jr (m), ~2.1!

where the tilde indicates equilibrium. The constantc is often
taken to denote the costs to the bank of servicing the prod
The proportionality factorJ has, in the case of nonmaturit
deposits, been interpreted as the fraction of deposited mo
that Federal Reserve requirements allow to be lent@2,16,17#.
The intuition behind this equilibrium relationship, as point
out by O’Brienet al. @2#, is ‘‘that if a bank offered to pay the
market rate on an account the bank would lose money
two reasons. First, due to Federal Reserve requirements
bank cannot reinvest and earn interest on all of a deposit,
only on the fractionJ of the account; whereJ equals one
minus the marginal reserve requirement. But even the
posit rateJr (m) loses money for the bank since the bank m
cover its costs of servicing the account.’’ Thus,c is added to
Jr (m) and we obtain Eq.~2.1!. While the interpretation ofJ
in terms of a Federal Reserve requirement clearly bre
down for products without such a requirement, Eq.~2.1! re-
mains, nevertheless, a basic assumption of equilibrium
havior for most administered-rate products@1,2,8–13#.

The rate relationship in Eq.~2.1! is characterized by thre
features:~i! a unique equilibrium product rate for each lev
of the market rate,~ii ! instantaneous achievement of th
equilibrium response, and~iii ! linearity of the response. We
note in passing that the equilibrium rate is completely rec
erable.

The empirical dynamics of administered rates, howev
demonstrate that the equilibrium response is not achie
instantaneously and a lagged response is observed@3–9#. To
incorporate this observed lag into the relationship betw
the product rate and the market rate, previous research
augmented Eq.~2.1! with an ad hoc ‘‘partial adjustment’’
model of the form

Dr n
(p)5(

i 50

N

@air n2 i
(m) 1bir n2 i 11

(p) #, ~2.2!

where we have introduced the time-dependent notationr n
(p)

[r (p)(tn). This functional form is the basis of most of th
econometric studies that have appeared in the literatur
date @1,2,8–13#. While some researchers have posited t
the coefficients in Eq.~2.2! depend on the direction of th
change in the market rate, O’Brien@13# has recently pointed
out, however, that such an assumption is not consistent
the assumed equilibrium relationship given in Eq.~2.1!.
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B. Anelastic rate dynamics

The theory of anelasticity is a generalization of the theo
of ideal elasticity that allows for time dependence in t
response of a material to an applied stress. Like previ
treatments of administered-rate dynamics it assumes the
istence of a unique equilibrium relationship between str
and strain known as Hooke’s law. The equilibrium relatio
ship given in Eq.~2.1! is, in fact, identical to the scala
version of Hooke’s law of ideal elasticitye5Js with the
product rate playing the role4 of straine and the market rate
playing the role of stresss.5 In this context the constantc
can be interpreted as the contribution to the product r
driven by a different ‘‘stress’’: the cost to the bank of mai
taining the account.6

The differential dynamics of anelasticity are not obtain
through a direct application of lagged variables via Eq.~2.2!
but, rather, by noting that the assumption of linearity impl
a general market-product rate relationship of the form

S f 01 f 1

d

dt
1 f 2

d2

dt2
1••• D r (p)

5S g01g1

d

dt
1g2

d2

dt2
••• D r (m). ~2.3!

While the econometric application of this equation, like E
~2.2!, requires an analysis of the number of terms neede
describe the observed dynamics, the use of Eq.~2.3! enables
an economic interpretation of these terms and the coe
cients. In practice a wide range of relaxation dynamics h
been found to be described well by the comparatively sim
differential relationship7

dr (p)

dt
1h~r (p)2c!5JU

dr (m)

dt
1hJRr (m), ~2.4!

whereh denotes the rate at which the product rate relaxe
the equilibrium level,JU denotes that fraction of the re
sponse that occurs instantaneously, andJR denotes the ulti-

4While the notions of strain, stress, and force are also used
metaphors in economics and finance, our use of these metap
used here is to motivate the comparison of notation.

5A more complete correspondence with scalar elasticity can
achieved by positing that market rates change in response to m
stresss (m) induced by market forces. To the extent that mark
rates respond to market forces in an essentially instantaneous

ner, we can writer (m)5(K/J)s (m) from which it follows thatr̃ (p)

5c1Ks (m): Hooke’s law relating the product rate to the mark
stress via the complianceK.

6We thank Leif Wennerberg for this observation.
7Indeed, this relationship is so ubiquitous that the resulting a

lastic system is referred to as the ‘‘standard anelastic solid’’@18#.
Higher-order differential equations can be used to treat more c
plex relaxation processes. Nowick and Berry@18# show, however,
that these higher-order differential processes can be represente
linear combination of the standard anelastic solid. The interest
dynamics discussed in this paper are described quite adequ
with the standard anelastic differential equation given above.
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4732 PRE 62RAYMOND J. HAWKINS AND MICHAEL R. ARNOLD
mate extent of the response function@5J(t5`)#. The
change in the product rate with respect to time is, in t
case, a function of the current product rate, the current m
ket rate, and the change in the market rate with respec
time.

Some intuition for the interpretation of this differenti
product-market rate relationship can be obtained for the c
of a simple market rate shock. Given a sudden change in
market rate, that is subsequently held constant atr (m), and
the equilibrium relationship given by Eq.~2.1!, Eq. ~2.4! can
be integrated to yield the time-dependent product rate

r (p)~ t !5c1~JU1dJ@12e2ht# !r (m), ~2.5!

wheredJ[@JR2JU#, whence

J~ t !5JU1dJ@12e2ht#; ~2.6!

illustrating the decomposition of the responseJ into an in-
stantaneous contributionJU and a time-dependent portio
proportional todJ mentioned above. The product-rate r
sponse to this step change in the market rate is illustrate
Fig. 1 where we show the response of the product rate
step change in the market rate withc50.25, JU50.375,
dJ50.5, andh51.0. The product rate tracks the market ra
instantaneously over a range defined byJU ; in this case to
1.0. The product rate then relaxes to equilibrium with t
market rate~in this exampler̃ (p)50.2510.875r (m)). Vary-
ing JU andJR ~or, equivalentlydJ) one can span the rang
of responses from being completely instantaneous,JU5JR
.0, to being completely time dependent,JU50.

C. Anelastic partial adjustment models

A variety of partial adjustment models can be develop
for the differential relationship given above by discretizin8

the integral form ofdr (p)/dt given in Eqs.~2.4!:

r (p)~ t !5r n
(p)1E

tn

t

f @r (p)~t!,r (m)~t!,c#dt, ~2.7!

8See, for example, Chap. 1 of Koonin@19# or Section 16.7 of
Presset al. @20#.

FIG. 1. The response of the product rate to a step change in
market rate given by Eq.~2.4!.
s
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which is known to yield

r n11
(p) 5r n

(p)1h(
i 50

N

b i f n112 i , ~2.8!

wheref represents all terms in Eq.~2.4! except fordr (p)/dt
andh is the time step. This expression is essentially identi
to the partial adjustment formula given in Eq.~2.2! above.
Using standard discretization techniques one can derive
eral partial adjustment models from Eq.~2.4! appropriate for
more complex behaviors of the driving market rate. We n
explore some common discretizations of our standard ane
tic system that resemble closely the partial adjustment
mulas that have appeared in the literature.

Rewriting Eq. ~2.4! in terms of the variabley[r (p)

2JUr (m), we begin with the forward-difference Euler equ
tion yn115yn1 f n from which it follows that

r n11
(p) 5hc1r n

(p)1JU~r n11
(m) 2r n

(m)!1h~JRr n
(m)2r n

(p)!.
~2.9!

We note that whenhJR5JU , this relationship becomes

r n11
(p) 5hc1~12h!r n

(p)1JUr n11
(m) , ~2.10!

which is identical in structure to the simplest partial adju
ment model discussed by Mays@1#.

While the Euler discretization of Eq.~2.4! yields a popu-
lar partial adjustment expression, partial adjustment mod
with more temporal lags do exist in the literature o
administered-rate products. More temporal lags can be in
duced in two different ways. First, if the deliberations of t
pricing committee are known to correspond to Eq.~2.4! ~i.e.,
the product rate is based on considerations of the level
change of the rates! then partial adjustment models can b
obtained using different discretization techniques. Altern
tively, greater temporal lags follow naturally if the deliber
tions of the committee include the change in the slope of
market and product rates as a function of time. We exam
each in turn.

Partial adjustment models, based on Eq.~2.4!, with
greater temporal lags, can be obtained through higher-o
discretizations such as the Adams-Bashford methods.
Adams-Bashford two-step method is given byyn115yn

1@ 3
2 f n2 1

2 f n21#. Applying this to Eq.~2.4! yields

r n11
(p) 5hc1r n

(p)1JU~r n11
(m) 2r n

(m)!1 3
2 h~JRr n

(m)2r n
(p)!

2 1
2 h~JRr n21

(m) 2r n21
(p) !, ~2.11!

which shares many structural aspects with the partial adj
ment model developed by the Office of Thrift Supervisi
~OTS! @11#. Further temporal lags can be included by app
ing the Adams-Bashford three-step methodyn115yn
1 1

12 @23f n216f n2115 f n22# to Eq. ~2.4!:

r n11
(p) 5hc1r n

(p)1JU~r n11
(m) 2r n

(m)!1 23
12 h~JRr n

(m)2r n
(p)!

2 16
12 h~JRr n21

(m) 2r n21
(p) !1 5

12 h~JRr n22
(m) 2r n22

(p) !.

~2.12!

he
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If the product rate is thought also to be a function of t
change in the slope of the market and product rates a
function of time, it is likely that the dynamics are bett
represented by the relationship involving two relaxations

d2r (p)

dt2
1~h (1)1h (2)!

dr (p)

dt
1h (1)h (2)~r (p)2c!

5JU

d2r (m)

dt2
1@dJ(1)h (1)1dJ(2)h (2)1~h (1)1h (2)!JU#

3
dr (m)

dt
1h (1)h (2)~dJ(1)1dJ(2)1JU!r (m), ~2.13!

which is simply Eq.~2.3! with up to second-order derivative
included and whereh ( i ) and dJ( i ) correspond to thei th re-
laxation. While somewhat more formidable than Eq.~2.4!,
given this choice of terms and coefficients, the associa
response function is known@18# to be a simple sum of the
responses resulting in a generalization of Eq.~2.6! to

J~ t !5JU1(
i 51

2

dJ( i )@12e2h( i )t#, ~2.14!

where we see that the response function now contains
relaxation response terms in addition to the instantane
response.

The partial adjustment model that follows from an Eu
discretization of Eq.~2.13! yields, via the second derivative
a function of the form

r n11
(p) 5hc1r n

(p)1h~r n
(p) ,r n21

(p) ,r n11
(m) ,r n

(m) ,r n21
(m) !.

~2.15!

While this expression contains the same number of temp
lags as Eq.~2.11! and has a structure similar to that of th
OTS model@11#, it has two more degrees of freedom th
Eq. ~2.11! due to the more complex relaxation process.

The anelastic partial adjustment models differ from t
partial adjustment models that have appeared in the litera
in two important ways. First, the number of free paramet
is determined by the nature of the differential rate relatio
ship, while the number of terms is determined independe
by the nature of the discretization of the differential ra
relationship. Second, the decoupling of the number of te
from the number of free parameters in the partial adjustm
model allows the partial adjustment model to better refl
the nature of how the pricing committees adjust rates in
sponse to market rates. While the differential rate relati
ship provides a phenomenological representation of the
served lag in the product-rate adjustment, the discrete f
of the model can be expressed so as to reflect the numb
previous time periods included in the deliberations of
pricing committee. Thus, the anelastic approach provide
convenient way to avoid overspecification of the relations
between the product and market rates while simultaneo
providing the flexibility needed to properly represent the d
used in rate policy decisions.
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D. Simulation using Boltzmann superposition

Having demonstrated that the functional form of the p
tial adjustment models that have appeared in the litera
can be recovered from the anelastic formalism using stand
discretization techniques, we note in passing that there
far simpler approach to the modeling of these rate dynam
that may be of use in future work. As pointed out by Nowi
and Berry@18# manipulation~and discretization! of the dif-
ferential product-market rate equations becomes increasi
complex as the order of these equations increase. An ap
priately chosen manner of increasing the order of the diff
ential equation@employed, for example, in Eq.~2.13!# allows
us to write down the response function@cf. Eqs. ~2.6! and
~2.14!# directly as

J~ t !5JU1(
i 51

N

dJ( i )@12e2h( i )t#, ~2.16!

whereN represents both the order of the differential term
included in Eq.~2.3! and the number of relaxation term
Then, as a consequence of the linearity of the system—
known as the Boltzmann superposition principle—we c
given a history of market rate changesr i

(m) applied at suc-
cessively increasing timest1 ,t2 , . . . ,tM , write the product
rate as

r (p)~ t !2c5(
i 51

M

r i
(m)J~ t2t i !. ~2.17!

These simple relations provide a straightforward calculat
of the product rate in response to changes in the market
with a response function that is specified easily in terms
two types of coefficients: a relaxation rate and the fraction
the response corresponding to that rate.

While by no means an exhaustive collection of the mod
that can be generated from Eqs.~2.1! and ~2.3!, Eqs.~2.9!,
~2.10!, ~2.11!, ~2.12!, and ~2.16! illustrate, nevertheless, th
rich variety of partial adjustment models that follow from
single linear differential relationship between the produ
and market rates that, in turn, follows from an anelastic
terpretation of the relationship between the product and m
ket rates. We now apply the anelastic approach to the
scription of the observed dynamics of administered rates

FIG. 2. The market rate~three-month LIBOR!, observed CMX
rate, and calculated CMX rate as a function of time.
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III. ANELASTIC RELAXATIONS AND OBSERVED
PRODUCT-RATE DYNAMICS

We have used the anelastic approach described abov
model the dynamics of the Cash MaximizerTM ~CMX! inter-
est rates@21# and of the rates for retail certificates of depo
~CD’s!. The Cash MaximizerTM account is a money marke
deposit account that requires a minimum of USD 2500
open and to avoid service charges.9 Unlike the CMX product
that has no defined maturity, the retail CD, used in this stu
has a three-month maturity.10 The CD that we shall analyz
below has a face value of USD 2500. The CD and CM
rates are set by committee.

The market rate driving changes in the CMX rates
taken to be that rate most closely matching a matched
along the bank’s cost-of-funds curve. Since the marginal c
of funds for Bank of America during this period is best r
flected by the London Interbank Offer Rate~LIBOR! for
short maturities, we have taken the three-month LIBOR to
the market rate.

The month-end CMX rates are shown together with
three-month LIBOR for the period March 1983–Februa
1997 in Fig. 2. Comparing these rates we see that the C
rate is always less than the three-month LIBOR and that
CMX rate roughly tracks the movements of the three-mo
LIBOR in a largely attenuated and somewhat lagged man
We fit Eqs.~2.9!, ~2.11!, and ~2.12! to these data using th
generalized reduced gradient~GRG2! nonlinear optimization
solver in Microsoft ExcelTM. The coefficients resulting from
these fits are given in Table I together with the coefficient
determinationR2512SSE/SST, where SSE is the error su
of squares and SST is the total sum of squares. The fit of
~2.9! is shown together with the CMX rates and the thre

9In July 1986, Bank of America introduced USD 25 000 and US
100 000 tiers to this account. While the introduction of these ti
did introduce some additional pricing constraints~e.g., higher-
minimum tiers have rates greater than or equal to lower-minim
tiers! the dynamics of each tier is otherwise considered to be in
pendent of the other tiers.

10Retail customers of Bank of America could, during the period
be analyzed, select almost any maturity less than 7 years. M
customers chose the conventional maturities of 3 months, 6 mo
or annual increments out to 7 years.

TABLE I. Fitted results for the~i! Euler forward difference
~Euler FD!, ~ii ! Adams-Bashford two-step~Adams-Bashford 2!, and
~iii ! Adams-Bashford three-step~Adams-Bashford 3! discretized
forms of the anelastic model for the CMX rate.

Euler FD Adams-Bashford 2 Adams-Bashford 3

c 22.8544 22.7653 22.7006
JU 0.2933 0.2690 0.2633
JR 1.0060 0.9938 0.9854
h 0.0430 0.0452 0.0464
R2 0.9741 0.9746 0.9745
to

t

o

y,

te
st

e

e

X
e

h
r.

f

q.
-

month LIBOR rates in Fig. 2: the other fits are not shown,
differences among them cannot be resolved by eye on
scale.

An identical analysis was performed on the month-e
CD rates shown, together with the three-month LIBOR
the period October 1983–February 1997, in Fig. 3. The
sults of the fitting described above are shown in Table
The fit of Eq.~2.9! is shown together with the CD rates an
three-month LIBOR in Fig. 3. As in the case of Fig. 2, d
ferences among the various fits cannot be meaningfully
solved by eye on this scale.

We see in Figs. 2 and 3 that modeling changes in th
product~CMX, CD! rates, as an anelastic response to a m
ket rate, changes results in an expression@e.g., Eq.~2.9!# that
can track the observed product rate quite well. This is
markable given that these two products have quite differ
maturity assumptions: the CD has a fixed maturity while
CMX product has no maturity. These results, together w
the observation made above that economic assumptions
cerning the relationship between the market and prod
rates are the same as those of an anelastic process, pr
compelling evidence that these product rates respond to m
ket rates as if via anelastic relaxations.

IV. RELAXATIONS AND MARKET FRICTION

In a mechanical system the time-dependent stress-s
behavior is ‘‘an external manifestation of internal relaxati

s

e-

st
s,

FIG. 3. The market rate~three-month LIBOR!, observed CD
rate, and calculated CD rate as a function of time.

TABLE II. Fitted results for the~i! Euler forward difference
~Euler FD!, ~ii ! Adams-Bashford two-step~Adams-Bashford 2!, and
~iii ! Adams-Bashford three-step~Adams-Bashford 3! discretized
forms of the anelastic model for the CD rate.

Euler FD Adams-Bashford 2 Adams-Bashford 3

c 21.1967 21.2097 21.3271
JU 0.3255 0.2932 0.3331
JR 0.9289 0.9307 0.9493
h 0.1275 0.1332 0.1228
R2 0.9839 0.9840 0.9840
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behavior that arises from a coupling between stress
strain through internal variables that change to new equ
rium values only through kinetic processes such as di
sion’’ @18#. Similarly, time-dependent market-administer
rate behavior is an external manifestation of internal rel
ation behavior that arises from a coupling between the m
ket and product rates through internal variables such as c
petitor pricing responses and depositor’s balance elastic
that change to new equilibrium values only after the pass
of time. In both mechanical and market systems this tem
ral lag in response to an applied force is a manifestation
friction.

Our identification of administered-rate dynamics as rel
ations also provides a way of quantifying market friction. A
expression for this dissipation—also known as ‘‘internal fr
tion’’ in the anelasticity literature—can be obtained by co
sidering the case of a periodic market scalar stresss (m)(t)
due to a periodic market force

s (m)~ t !5s (m)~0!eivt, ~4.1!

where s (m)(0) is the market stress at timet50, i 5A21,
andv is the cyclic frequency of the market stress. The pro
uct rate will track the market force~and market rate, due to
linearity as discussed above! with a lag that can be repre
sented by a loss anglef:

r (p)~ t !5r (p)~0!ei (vt2f). ~4.2!

These expressions for the market and product rates imp
frequency dependent proportionality factorJ(v) @the Fourier
transform of J(t)# that is complexJ(v)5J1(v)2 iJ2(v)
and a loss angle related to the components ofJ(v) by
tan(f)5J2(v)/J1(v).

The isomorphism between anelasticity and administe
rates implies the existence of a state variable—a ma
equivalent of energy—at any phase in the market cycle gi
by *s (m)dr (p)}*r (m)dr (p) taken between the start of th
cycle up to the point of interest. The market energy dis
pated in a full market cycle is

DU5 R s (m)dr (p)}pJ2@r (m)~0!#2, ~4.3!

and the stored market energy is

U5E
vt50

p/2

s (m)dr (p)}
1

2
J1@r (m)~0!#2. ~4.4!

The ratio of these terms—the fractional market energy di
pated in a full market cycle—is related to the loss anglef by
DU/U52p tan(f) which, for the administered rates de
scribed by Eq.~2.4! yields

tanf5dJ
v/h

JR1JUv2/h2
. ~4.5!

Thus we see that the existence of an anelastic responsedJ
Þ0) in a market system implies a dissipation of market
ergy and a formal definition of market friction. As the exi
tence of this loss angle is due to the gathering and proces
of information needed to reestablish equilibrium—r (p)
d
-
-

-
r-
m-
es
e

o-
f

-

-

-

a

d
et
n

i-

i-

-

ng

→r̃(p)—it follows that the loss angle is also a measure
relative efficiency discussed by Farmer and Lo@22#. This is
illustrated in Fig. 4 where we see the loss angle as a func
of cyclic frequencyv for both the CMX and CD rates. In the
limit v→0, the market cycle becomes so long that any fin
relaxation rate is, on the time scale of a market cycle, inst
taneous and the rate systems behave as if there is no r
ation with J(t)5JR . In the limit v→`, the market cycle
becomes so short that the only component of the system
responds to the market force is the instantaneous portionJU .
Between these extremes we see the loss due to the relax
behavior. Forv,0.16 cycles per month~cycles greater than
about 6 months! the CMX rate loss is greater than that of th
CD. This is consistent with our expectation that the rate s
tem that relaxes faster requires less market energy to ach
equilibrium and is, therefore, less lossy and more efficie
For v.0.16 ~cycles less than about 6 months! the CD rate
has a greater fractional loss per cycle. This perhaps un
pected result follows from the relative relaxation rates
these two systems. As the cyclic frequency increases,
relaxation component begins to ‘‘freeze out’’ and the syst
behaves in an increasingly elastic manner withJ(t)→JU .
Since the CD rate relaxes faster than the CMX rate, the
laxation component of the CMX rate ‘‘freezes out’’ firs
making it less lossy than the CD rate in this frequency ran

V. DISCUSSION AND SUMMARY

Administered rates are unique in that they are set b
group of individuals attempting to maximize profits in th
face of market forces. As the future direction of mark
forces, commonly measured by market rates, is unknown
committee decisions exhibit a degree of inertia, equilibriu
between the market force and administered rate is achie
only after the passage of a certain amount of time. Histo
cally this process has been formally expressed by an
sumed linear equilibrium relationship and anad hocpartial
adjustment model to describe the change of the administ
rate in response to a change in the market rate. Commo
most previous treatments of administered-rate dynamics
the postulates that~i! for every market rate there is a uniqu
equilibrium rate, and vice versa,~ii ! the equilibrium response
is achieved only after the passage of sufficient time, and~iii !
the market-administered-rate relationship is linear. A con
bution of this paper is the observation that these postul

FIG. 4. The loss curves for CMX and CD rates.
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also form the basis for a well-developed theory of relaxat
processes in the physical sciences: indeed, these postu
are paraphrased directly from the introduction to anelasti
presented by Nowick and Berry@18#. We have examined this
market system and found that the assumed equilibrium
relationship corresponds to Hooke’s law of elasticity and t
the relaxation dynamics of administered rates are quite s
lar to anelastic relaxations. Developing this isomorphism
demonstrated that the basic structure of popularad hocpar-
tial adjustment models could be reproduced easily us
standard techniques for discretizing the simplest anela
differential relationship between the administered rate
market rate. We applied these models to the observed in
est rate dynamics of a Cash MaximizerTM account and a
certificate of deposit and found that, in spite of significa
differences in the maturity features of these products, th
io
rv

na

t

C

n
tes
y

te
t
i-
e

g
tic
d
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t
ir

dynamics are described well as anelastic relaxations. Fin
we found that the anelastic description of these dynam
provides a natural definition of market friction as the realiz
tion of internal friction or dissipation in this market system
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