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We show how the theory of anelasticity unifies the observed dynamics and proposed models of
administered-rate products. This theory yields a straightforward approach to rate model construction that we
illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demon-
strate how the use of this formalism leads to a natural definition of market friction.
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[. INTRODUCTION by market rates and that the response of an administered rate
to the market rate is not instantaneous. This behavior has
Administered-rate products represent a substantial fradseen modeled by a number of investigatpts2,8—13 who
tion of the liabilities of banks and savings and lohasd the  have settled largely on the use of partial adjustment mddels
ability to describe the response of these products to changés describe the noninstantaneous response of administered
in market rates is of critical importance for interest-rate riskrates to changes in market rates. While these models often
managemertt. Unlike market rates(e.g., U.S. Treasury adequately describe the observed administered-rate behavior,
bondsg that are set in an auction environment or contractuathey largely lack a theoretical basis with which to interpret
rates that respond instantaneously to market rates in a préie resulting parameters and with which to link rate policy to
scribed mannefe.g., home mortgaggsadministered rates the rate model. In this paper we show that the formal as-
(e.g., interest rates on checking and savings accpargsset sumptions upon which previous treatments of administered-
by a committee seeking an equilibrium rate in response toate dynamics are based are identical to the assumptions un-
changes in market rates. Factors that bear on this equilibriuderlying the formal treatment of a variety of relaxation
pricing include expected future market rates, competitoprocesses in condensed-matter physics including magnetic,
pricing responses, and depositor’'s short-term and long-terrdielectric, and anelastic relaxatioht5]. All these physical
balance elasticitie§.e., propensity to change balance levelsphenomena involve time-dependent relaxations toward
in response to rate changesll of which are known with  newly established equilibria that follow from a change in a
limited certainty. Balance elasticities are exceedingly diffi-driving force and can be described in terms of linear-
cult to estimate with any reliability because banks usually daesponse theory. Since these physical phenomena share a
not preserve much historical data and do not usually emplogommon mathematical description of relaxation/response
the resources needed to evaluate the data that does exighd since these physical phenomena and administered-rate
Consequently, these committees indicate a certain amount gfnamics share a variety of underlying assumptions, we
Inertia. o » _ make theansatzthat these phenomena all share a common
The general proclivity of pricing committees to leave well mathematical description. Given this we can move beyond
enough alone has been found in a variety of empirical studiegp ad hoctreatment of administered-rate dynamics and em-
[3—9] that have established that administered rates are drivefoy the phenomenological models that have been developed
to model these physical relaxation processes to model the
dynamics of administered-rate deposits.
1|\/|ays [1] notes that nonmaturity deposits—a class of The theory of anelasticity provides a useful framework
administered-rate products—comprise “42% of total bank liabili- with which to develop our treatment of administered-rate
ties and over 25% of savings and loé®&L) liabilities as of De-  dynamics because of the similarity between some of the
cember 1995.” equations that have appeared in the literature on adminis-
2As pointed out by May$1] and O'Brienet al. [2] the present tered rates and the scalar representation of anelasticity. We
value PV of administered-rate nonmaturity deposits can be esti-show in Sec. Il how the theory of anelasticity can be used to

mated using the equation develop a hierarchy of continuous-time models of the
 Dea(rM—r@—¢) administered-rate response function that include, as a subset,
PV=D,— Ty (1.)  the partial adjustment models that have appeared in the lit-
t= t

. . L m) @  erature. We find that the continuous-time models that follow
whereD; is the deposit balance at tinher;"” is the market rate,; from this approach lend themselves to an easy mapping be-

is the administered deposit rate, anddenotes the noninterest oo certain aspects of rate policy and of model structure.
charges associated with maintaining the account. Clearly there is

interest rate sensitivity in the present value: explicitly in the appear-

ance of the market rate in E(Ll) and implicitly in both the sensi-

tivity of the balances and the administered deposit rate to changes®See, for example, Chap. 9 of Kennefy4] for a discussion of
in the market rate. partial adjustment models in econometrics.
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We illustrate the utility of this approach in Sec. Ill by mod- B. Anelastic rate dynamics

eling the rate-response behavior for two administered-rate Thg theory of anelasticity is a generalization of the theory
products: money market accounts and time deposits. In Seg¢ jjeq) elasticity that allows for time dependence in the
IV-we explore the notion of dissipation embodied in these,oqonse of a material to an applied stress. Like previous
relaxation dynamics to develop a formal notion of marketyeatments of administered-rate dynamics it assumes the ex-
friction. istence of a unique equilibrium relationship between stress
and strain known as Hooke’s law. The equilibrium relation-
Il. RATE DYNAMICS ship given in Eq.(2.1) is, in fact, identical to the scalar
version of Hooke'’s law of ideal elasticity=Jo with the
. o product rate playing the rdlef straine and the market rate
Fundamental to essentially all descriptions of yjaying the role of stress.® In this context the constart
administered-rate product rates is the notion that there existg;n pe interpreted as the contribution to the product rate
an equilibrium relationship between the product r@féand  driven by a different “stress”: the cost to the bank of main-

A. Assumptions and econometric models

the market rate (™ that is of the form taining the accourft.
_ The differential dynamics of anelasticity are not obtained
rP=c+Jrm, (2.1)  through a direct application of lagged variables via E2)

S o ) but, rather, by noting that the assumption of linearity implies
where the tilde indicates equilibrium. The constai often 5 general market-product rate relationship of the form
taken to denote the costs to the bank of servicing the product.

The proportionality factod has, in the case of nonmaturity
deposits, been interpreted as the fraction of deposited monies
that Federal Reserve requirements allow to be[l2yit6,17.

d2
fo+fla+f2¥+ o fr®

The intuition behind this equilibrium relationship, as pointed d 42
out by O'Brienet al.[2], is “that if a bank offered to pay the =| 9o+ g1 +gp— - - - ) p(m) (2.3
market rate on an account the bank would lose money for dt dt?

two reasons. First, due to Federal Reserve requirements, the

bank cannot reinvest and earn interest on all of a deposit, bWhile the econometric application of this equation, like Eq.
only on the fractionJ of the account; wherd equals one (2.2), requires an analysis of the number of terms needed to
minus the marginal reserve requirement. But even the dedescribe the observed dynamics, the use of(E®) enables
posit rateJr(™ loses money for the bank since the bank mustan economic interpretation of these terms and the coeffi-
cover its costs of servicing the account.” Theds added to  cients. In practice a wide range of relaxation dynamics have
Jr(™ and we obtain Eq(2.1). While the interpretation o been found to be described well by the comparatively simple
in terms of a Federal Reserve requirement clearly breakdifferential relationship

down for products without such a requirement, Ejj1) re-

mains, nevertheless, a basic assumption of equilibrium be- dr® ®) dr(m
havior for most administered-rate produfts2,8—13. . TP =0 =dugy

The rate relationship in Eq2.1) is characterized by three
features(i) a unique equilibrium product rate for each level yhere 7 denotes the rate at which the product rate relaxes to
of the market rate(ii) instantaneous achievement of the the equilibrium level,J, denotes that fraction of the re-
equilibrium response, an(ii) linearity of the response. We gponse that occurs instantaneously, dadienotes the ulti-
note in passing that the equilibrium rate is completely recov-
erable.

The empirical dynamics of administered rates, however, ) ) )
demonstrate that the equilibrium response is not achieved WWhile the notions of strain, stress, and force are also used as
instantaneously and a lagged response is obséBs@. To metaphors_ln economics and flnanc_e, our use qf these metaphors
incorporate this observed lag into the relationship betweeh’ied here is to motivate the comparison of notation.

the product rate and the market rate, previous research hasA more complete correspondence with scalar elasticity can be
augmented Eq(2.1) with an ad hoc “partial adjustment” achieved by positing that market rates change in response to market
model of the forrrll stressa(™ induced by market forces. To the extent that market

rates respond to market forces in an essentially instantaneous man-
N ner, we can write ™= (K/J)a™ from which it follows thatr (P
Arg”): E [airﬁ@ﬁbarﬁ”)iﬂ], (2.2) =c+Ko(™: Hooke's law relating the product rate to the market
=0 stress via the compliande.

. . B 5We thank Leif Wennerberg for this observation.

V:Vh?;)e we haye |ntrqduced the .tlme-depe.ndent notaﬁ, n 7Ir_ldeed, this_ relationship is so ubiquitous that the _resulting ane-
=r'P(ty). This functional form is the basis of most of the |agtic system is referred to as the “standard anelastic sqlid].
econometric studies that have appeared in the literature tQigher-order differential equations can be used to treat more com-
date[1,2,8-13. While some researchers have posited thapjex relaxation processes. Nowick and Befiy] show, however,

the coefficients in Eq(2.2) depend on the direction of the that these higher-order differential processes can be represented as a
change in the market rate, O'Bri¢f3] has recently pointed linear combination of the standard anelastic solid. The interest rate
out, however, that such an assumption is not consistent witbynamics discussed in this paper are described quite adequately
the assumed equilibrium relationship given in E2.1). with the standard anelastic differential equation given above.

+ Jgr (™, (2.9
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25 . . P which is known to yield
PRODUCT RATE ======--
oL N
= i =rP+ hi:EO Bifari-i, (2.8
E 151 '/'" -
g& wheref represents all terms in EqR.4) except fordr(P)/dt
Eo1h - andh is the time step. This expression is essentially identical
[ael

to the partial adjustment formula given in E@.2) above.
0s L i Using standard discretization techniques one can derive sev-
eral partial adjustment models from EG.4) appropriate for
o , , , . more complex behaviors of the driving market rate. We now

0 1 2 3 4 5 explore some common discretizations of our standard anelas-

TIME (arb. units) tic system that resemble closely the partial adjustment for-
_mulas that have appeared in the literature.
malr:klgt. r;.te'l'hie\/;sgorésézoi)the product rate to a step change in the Rewriting Eq._(2.4_) in terms of the variableyEr(p)
9 y o —Jyr™, we begin with the forward-difference Euler equa-

tiony, 1=y, +f, from which it follows that

mate extent of the response functigr=J(t==)]. The
change in the product rate with respect to time is, in this
case, a function of the current product rate, the current mar-
ket rate, and the change in the market rate with respect to
time.

Some intuition for the interpretation of this differential
product-market rate relationship can be obtained for the case ®)
of a simple market rate shock. Given a sudden change in the M1
market rate, that is subsequently held constant& and
the equilibrium relationship given by E(.1), Eq.(2.4) can
be integrated to yield the time-dependent product rate

rPy=ne+rP+3y(rP—r{™)+ (Jar V- r&‘”)i )
2.9

We note that whemJg=Jy,, this relationship becomes
=nc+(1—prP+3,rm, (2.10
which is identical in structure to the simplest partial adjust-

ment model discussed by Maj3s].
While the Euler discretization of Eq2.4) yields a popu-

r®t)y=c+(Jy+8I[1—e "Hrm, (2.5 lar partial adjustment expression, partial adjustment models
with more temporal lags do exist in the literature on
where §J=[Jz—Jy], whence administered-rate products. More temporal lags can be intro-
duced in two different ways. First, if the deliberations of the
J()=Jy+d8J[1—-e ™]; (2.6 pricing committee are known to correspond to Ef4) (i.e.,

the product rate is based on considerations of the level and
illustrating the decomposition of the responk@&to an in-  change of the ratgghen partial adjustment models can be
stantaneous contributiod,; and a time-dependent portion obtained using different discretization techniques. Alterna-
proportional to 8J mentioned above. The product-rate re- tively, greater temporal lags follow naturally if the delibera-
sponse to this step change in the market rate is illustrated itions of the committee include the change in the slope of the
Fig. 1 where we show the response of the product rate to market and product rates as a function of time. We examine
step change in the market rate with=0.25, J,=0.375, each in turn.
8J=0.5, andp=1.0. The product rate tracks the market rate Partial adjustment models, based on H@.4), with
instantaneously over a range definedJy, in this case to greater temporal lags, can be obtained through higher-order
1.0. The product rate then relaxes to equilibrium with thediscretizations such as the Adams-Bashford methods. The
market rate(in this exampler (P =0.25+0.875 (™). vary- Adams-Bashford two-step method is given gy 1=y,
ing J, andJg (or, equivalently5J) one can span the range +[53f,—3f,_1]. Applying this to Eq.(2.4) yields
of responses from being completely instantanedyss Jg
>0, to being completely time dependedt,=0. r® = nc+rP+35r (D —r ™)+ 2 p(Jpr ™ —rP)
1 m
C. Anelastic partial adjustment models =2 n(IRry i), (2.13
A variety of partial adjustment models can be developedyhich shares many structural aspects with the partial adjust-
for the differential relationship given above by discretiZing ment model developed by the Office of Thrift Supervision
the integral form ofdr(P)/dt given in Eqs.(2.4): (OTS) [11]. Further temporal lags can be included by apply-
¢ ing the Adams-Bashford three-step methag., 1=V,
r<P>(t):r§P+f (e .cldr, (27 -+ &[23f,—16f, 1+5f, ,] to Eq.(2.4):
t

n

rPl=ne+rP+3u(r{P—r™)+ B n(Ier (W —r{P)

_ 16 (m _ (P 5 (m _ +(p)

JRr r + Jgr r .
8See, for example, Chap. 1 of Koonja9] or Section 16.7 of 12 70RM =1~ M=) + 12 7R =2~ M)
Presset al. [20]. (2.12
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If the product rate is thought also to be a function of the 4 e T L T AR S AN L
change in the slope of the market and product rates as a | o QBSERVED OMX - |
function of time, it is likely that the dynamics are better
represented by the relationship involving two relaxations 10 | .

2,(p) ©) ser ]

d-rP drP pu
F (D4 p@)—— 4+ D) @) (P) = 5 sl |
e (75 ) g (P -c) % 6
1}k 4
d?r(m
=Jy e +[5J(1)7](1)+ 53(2)7](2)+(,7(1)+ 71(2))JU] o b i
t
dr(m) 81/82 01/84 01/86 01/88 01/90 01/92 01/94 01/96 01/98
X + W5 (5ID+ 53 + 3)r(m, (2.13 DATE

FIG. 2. The market ratéhree-month LIBOR, observed CMX

. R te, and calculated CMX rat functi f time.
which is simply Eq.(2.3) with up to second-order derivatives rate, and caleuiate faie as a function ot fime

included and where;() and 834 correspond to théth re-
laxation. While somewhat more formidable than E2.4),
given this choice of terms and coefficients, the associated Having demonstrated that the functional form of the par-
response function is knowfi8] to be a simple sum of the tial adjustment models that have appeared in the literature

D. Simulation using Boltzmann superposition

responses resulting in a generalization of Ex6) to can be recovered from the anelastic formalism using standard
discretization techniques, we note in passing that there is a
2 far simpler approach to the modeling of these rate dynamics
I =T+ 5Jr1—e 7t , 21 that may be of use in futL_Jre work. As po.mte_d out by Nc_)W|ck
=y Z’l [ ] 219 and Berry[18] manipulation(and discretizationof the dif-

ferential product-market rate equations becomes increasingly
wgomplex as the order of these equations increase. An appro-
ugriately chosen manner of increasing the order of the differ-
ential equatioiemployed, for example, in E¢2.13] allows
The partial adjustment model that follows from an EulerYS t0 write down the response functigef. Egs.(2.6) and
discretization of Eq(2.13) yields, via the second derivatives, (2.14] directly as
a function of the form N

J(t>=Ju+i§l s30[1—e 7", (2.16

where we see that the response function now contains t
relaxation response terms in addition to the instantaneo
response.

rg‘ll?zlz 770+ rgp)—’— h(rgp) 1r$1p—)1 lrEWT—)l ar%m) !rE]nl)l)'
2.1 . .
219 where N represents both the order of the differential terms

) ) ) ) included in Eq.(2.3 and the number of relaxation terms.
While this expression contains the same number of temporathen as a consequence of the linearity of the system—also

lags as Eq(2.11) and has a structure similar to that of the y own as the Boltzmann superposition principle—we can,

OTS model[11], it has two more degrees pf freedom than given a history of market rate changa‘é") applied at suc-
Eqg. (2.11) due to the more complex relaxation process.

The anelastic partial adjustment models differ from thecessg/sely increasing times;, 2, ..., , Write the product
partial adjustment models that have appeared in the literature
in two important ways. First, the number of free parameters M
is determined by the nature of the differential rate relation- rPt)—c=>, rMit—r). (2.17)
ship, while the number of terms is determined independently i=1

by the nature of the discretization of the differential rate

relationship. Second, the decoupling of the number of term3hese simple relations provide a straightforward calculation
from the number of free parameters in the partial adjustmendf the product rate in response to changes in the market rate
model allows the partial adjustment model to better reflectvith a response function that is specified easily in terms of
the nature of how the pricing committees adjust rates in retwo types of coefficients: a relaxation rate and the fraction of
sponse to market rates. While the differential rate relationthe response corresponding to that rate.

ship provides a phenomenological representation of the ob- While by no means an exhaustive collection of the models
served lag in the product-rate adjustment, the discrete forrthat can be generated from Edq2.1) and (2.3), Egs.(2.9),

of the model can be expressed so as to reflect the number (.10, (2.11), (2.12, and(2.16 illustrate, nevertheless, the
previous time periods included in the deliberations of therich variety of partial adjustment models that follow from a
pricing committee. Thus, the anelastic approach provides aingle linear differential relationship between the product
convenient way to avoid overspecification of the relationshipand market rates that, in turn, follows from an anelastic in-
between the product and market rates while simultaneouslierpretation of the relationship between the product and mar-
providing the flexibility needed to properly represent the datéket rates. We now apply the anelastic approach to the de-
used in rate policy decisions. scription of the observed dynamics of administered rates.
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TABLE |. Fitted results for the(i) Euler forward difference 14 prerere e anaiil T T
(Euler FD, (ii) Adams-Bashford two-stefdams-Bashford R and OBSERVED CD ===
(i) Adams-Bashford three-stepAdams-Bashford B discretized 2r CALCULATED CD ---=-=- 7
forms of the anelastic model for the CMX rate. 10k 4

Euler FD Adams-Bashford 2 Adams-Bashford 3

c —2.8544 —2.7653 —2.7006 6 .
Ju 0.2933 0.2690 0.2633 L l
Jr 1.0060 0.9938 0.9854
7 0.0430 0.0452 0.0464 2t -
R? 0.9741 0.9746 0.9745

0
01/82 01/84 01/86 01/88 01/90 01/92 01/94 01/96 01/98

lIl. ANELASTIC RELAXATIONS AND OBSERVED DATE

PRODUCT-RATE DYNAMICS FIG. 3. The market ratéthree-month LIBOR, observed CD

. . rate, and calculated CD rate as a function of time.
We have used the anelastic approach described above to

model the dynamics of the Cash MaximiZé(CMX) inter-  month LIBOR rates in Fig. 2: the other fits are not shown, as
est rateg21] and of the rates for retail certificates of deposit yifferences among them cannot be resolved by eye on this
(CD's). The Cash MaximizéM account is a money market gcgje.
deposit account that requires a minimum of USD 2500 to  ap identical analysis was performed on the month-end
open and to avoid service chargednlike the CMX product  cp rates shown, together with the three-month LIBOR for
that has no defined maturity, the retail CD, used in this studyihe period October 1983—February 1997, in Fig. 3. The re-
has a three-month maturity.The CD that we shall analyze gyits of the fitting described above are shown in Table II.
below has a face value of USD 2500. The CD and CMXthe fit of Eq.(2.9) is shown together with the CD rates and
rates are set by committee. . _three-month LIBOR in Fig. 3. As in the case of Fig. 2, dif-
The market rate driving changes in the CMX rates iSferences among the various fits cannot be meaningfully re-
taken to be that rate most closely matching a matched ratgg|yed by eye on this scale.
along the bank’s cost-of-funds curve. Since the marginal cost e see in Figs. 2 and 3 that modeling changes in these
of funds for Bank of America during this period is best re- hroquct(CMX, CD) rates, as an anelastic response to a mar-
flected by the London Interbank Offer Ra(eIBOR) for ket rate, changes results in an expres§ig., Eq(2.9)] that
short maturities, we have taken the three-month LIBOR to b@an track the observed product rate quite well. This is re-
the market rate. _ markable given that these two products have quite different
The month-end CMX rates are shown together with thematyrity assumptions: the CD has a fixed maturity while the
three-month LIBOR for the period March 1983—Februarycivx product has no maturity. These results, together with
1997 in Fig. 2. Comparing these rates we see that the CM¥he observation made above that economic assumptions con-
rate is always less than the three-month LIBOR and that thgerning the relationship between the market and product
CMX rate roughly tracks the movements of the three-montfiates are the same as those of an anelastic process, provide
LIBOR in a largely attenuated and somewhat lagged mannegompelling evidence that these product rates respond to mar-
We fit Egs.(2.9), (2.11), and(2.12) to these data using the yet rates as if via anelastic relaxations.
generalized reduced gradidf@RG2 nonlinear optimization
solver in Microsoft ExcéM. The coefficients resulting from IV. RELAXATIONS AND MARKET FRICTION
these fits are given in Table | together with the coefficient of
determinatiorR?=1— SSE/SST, where SSE is the error sum In a mechanical system the time-dependent stress-strain
of squares and SST is the total sum of squares. The fit of Edpehavior is “an external manifestation of internal relaxation

(2.9 is shown together with the CMX rates and the three- ) ) )
TABLE Il. Fitted results for the(i) Euler forward difference

(Euler FD, (ii) Adams-Bashford two-stefA\dams-Bashford @ and
(iii) Adams-Bashford three-stefAdams-Bashford B discretized

%n July 1986, Bank of America introduced USD 25 000 and USDforms of the anelastic model for the CD rate.
100 000 tiers to this account. While the introduction of these tiers

did introduce some additional pricing constrair(s.g., higher- Euler FD Adams-Bashford 2 Adams-Bashford 3

minimum tiers have rates greater than or equal to lower-minimum

tiers) the dynamics of each tier is otherwise considered to be inde€ —1.1967 —1.2097 —1.3271

pendent of the other tiers. Ju 0.3255 0.2932 0.3331
0Retail customers of Bank of America could, during the period toJr 0.9289 0.9307 0.9493

be analyzed, select almost any maturity less than 7 years. Mosp 0.1275 0.1332 0.1228

customers chose the conventional maturities of 3 months, 6 month&?2 0.9839 0.9840 0.9840

or annual increments out to 7 years.
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behavior that arises from a coupling between stress and 0.8
strain through internal variables that change to new equilib- 07
rium values only through kinetic processes such as diffu-
sion” [18]. Similarly, time-dependent market-administered
rate behavior is an external manifestation of internal relax- 05

0.6

ation behavior that arises from a coupling between the mar- ¢ 04
ket and product rates through internal variables such as com- S
petitor pricing responses and depositor's balance elasticities 0.3
that change to new equilibrium values only after the passage 0.2

of time. In both mechanical and market systems this tempo-
ral lag in response to an applied force is a manifestation of
friction.

Our identification of administered-rate dynamics as relax-
ations also provides a way of quantifying market friction. An
expression for this dissipation—also known as “internal fric- FIG. 4. The loss curves for CMX and CD rates.
tion” in the anelasticity literature—can be obtained by con-

sidering the case of a periodic market scalar ste€88(t) ()it follows that the loss angle is also a measure of

 (cycles/month)

due to a periodic market force relative efficiency discussed by Farmer and[2@]. This is
oM (t)= oM (Q)elet, 4.1) |IIustra_ted in Fig. 4 where we see the loss angle as a function
of cyclic frequencyw for both the CMX and CD rates. In the
where o(™(0) is the market stress at time=0,i=+—1, limit «—0, the market cycle becomes so long that any finite

andw is the cyclic frequency of the market stress. The prod-elaxation rate is, on the time scale of a market cycle, instan-
uct rate will track the market forceand market rate, due to taneous and the rate systems behave as if there is no relax-
linearity as discussed abovaith a lag that can be repre- ation with J(t)=Jg. In the limit w—, the market cycle

sented by a loss angle: becomes so short that the only component of the system that
. responds to the market force is the instantaneous paitjon
r(P)(t)=rP(0)e'(@t=4), (4.2)  Between these extremes we see the loss due to the relaxation

behavior. Forw<0.16 cycles per montfcycles greater than

These expressions for the market and product rates imply gbout 6 monthsthe CMX rate loss is greater than that of the
frequency dependent proportionality facgw) [the Fourier  CD. This is consistent with our expectation that the rate sys-
transform of J(t)] that is complexJ(w)=J;(w)—iJ(w)  tem that relaxes faster requires less market energy to achieve
and a loss angle related to the componentsJ@b) by  equilibrium and is, therefore, less lossy and more efficient.
tan(¢) =Jy(w)/J1(w). For »>0.16 (cycles less than about 6 monttke CD rate

The isomorphism between anelasticity and administerethas a greater fractional loss per cycle. This perhaps unex-
rates implies the existence of a state variable—a markgiected result follows from the relative relaxation rates of
equivalent of energy—at any phase in the market cycle givehese two systems. As the cyclic frequency increases, the
by [o™dr®Pe [r(Mdr(P taken between the start of the relaxation component begins to “freeze out” and the system
cycle up to the point of interest. The market energy dissibehaves in an increasingly elastic manner witt) —J .

pated in a full market cycle is Since the CD rate relaxes faster than the CMX rate, the re-
laxation component of the CMX rate “freezes out” first
AU= § a(m)dr(p)OCWJz[r(m)(O)]z (4.3 making it less lossy than the CD rate in this frequency range.
and the stored market energy is V. DISCUSSION AND SUMMARY

w2 1 Administered rates are unique in that they are set by a
U:f aMdr®o =J,[r(M(0)]2. (4.4 group of individuals attempting to maximize profits in the
ot=0 2 face of market forces. As the future direction of market
. _ . forces, commonly measured by market rates, is unknown and
The ratio of these terms—the fractional market energy dissizommittee decisions exhibit a degree of inertia, equilibrium
pated in a full market cycle—is related to the loss anglley  petween the market force and administered rate is achieved
AU/U=2mtan($) which, for the administered rates de- onyy after the passage of a certain amount of time. Histori-

scribed by Eq(2.4) yields cally this process has been formally expressed by an as-
sumed linear equilibrium relationship and ad hocpartial
_ wln adjustment model to describe the change of the administered
tan¢=45J . (4.5 X .
Jrt+Jyw? 7? rate in response to a change in the market rate. Common to

most previous treatments of administered-rate dynamics are
Thus we see that the existence of an anelastic respaiise (the postulates thdt) for every market rate there is a unique
#0) in a market system implies a dissipation of market en-equilibrium rate, and vice verséi) the equilibrium response
ergy and a formal definition of market friction. As the exis- is achieved only after the passage of sufficient time, @nd
tence of this loss angle is due to the gathering and processirte market-administered-rate relationship is linear. A contri-
of information needed to reestablish equilibrium®  bution of this paper is the observation that these postulates
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also form the basis for a well-developed theory of relaxationdynamics are described well as anelastic relaxations. Finally
processes in the physical sciences: indeed, these postulates found that the anelastic description of these dynamics
are paraphrased directly from the introduction to anelasticityprovides a natural definition of market friction as the realiza-
presented by Nowick and Berf{8]. We have examined this tion of internal friction or dissipation in this market system.
market system and found that the assumed equilibrium rate
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